Heterologous Production of the Photosynthetic Reaction Center and Light Harvesting 1 Complexes of the Thermophile Thermochromatium tepidum in the Mesophile Rhodobacter sphaeroides and Thermal Stability of a Hybrid Core Complex

Author:

Jun D.1,Huang V.1,Beatty J. T.1

Affiliation:

1. Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada

Abstract

ABSTRACT The photosynthetic complexes of the thermophile Thermochromatium tepidum are of considerable interest in biohybrid solar cell applications because of the ability of thermophilic proteins to tolerate elevated temperatures. Synthetic operons encoding reaction center (RC) and light harvesting 1 (LH1) pigment-protein complexes of T. tepidum were expressed in the mesophile Rhodobacter sphaeroides . The T. tepidum RC (TRC) was assembled and was found to be functional with the addition of menadione to populate the Q A pocket. The production of T. tepidum LH1 (TLH1) was increased by selection of a phototrophy-capable mutant after UV irradiation mutagenesis, which yielded a hybrid RC-TLH1 core complex consisting of the R. sphaeroides RC and T. tepidum TLH1, confirmed by the absorbance peak of TLH1 at 915 nm. Affinity chromatography partial purification and subsequent sucrose gradient analysis of the hybrid RC-TLH1 core complex indicated that this core complex assembled as a monomer. Furthermore, the RC-TLH1 hybrid core complex was more tolerant of a temperature of 70°C than the R. sphaeroides RC-LH1 core complexes in both the dimeric and monomeric forms; after 1 h, the hybrid complex retained 58% of the initial starting value, compared to values of 11% and 53% for the R. sphaeroides RC-LH1 dimer and monomer forms, respectively. IMPORTANCE This work is important because it is a new approach to bioengineering of photosynthesis proteins for potential use in biophotovoltaic solar energy capture. The work establishes a proof of principle for future biohybrid solar cell applications.

Funder

Genome British Columbia

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3