Role of the Coronavirus E Viroporin Protein Transmembrane Domain in Virus Assembly

Author:

Ye Ye1,Hogue Brenda G.1

Affiliation:

1. The Biodesign Institute and School of Life Sciences, Microbiology Graduate Program, Arizona State University, Tempe, Arizona 85287

Abstract

ABSTRACT Coronavirus envelope (E) proteins are small (∼75- to 110-amino-acid) membrane proteins that have a short hydrophilic amino terminus, a relatively long hydrophobic membrane domain, and a long hydrophilic carboxy-terminal domain. The protein is a minor virion structural component that plays an important, not fully understood role in virus production. It was recently demonstrated that the protein forms ion channels. We investigated the importance of the hydrophobic domain of the mouse hepatitis coronavirus (MHV) A59 E protein. Alanine scanning insertion mutagenesis was used to examine the effect of disruption of the domain on virus production in the context of the virus genome by using a MHV A59 infectious clone. Mutant viruses exhibited smaller plaque phenotypes, and virus production was significantly crippled. Analysis of recovered viruses suggested that the structure of the presumed α-helical structure and positioning of polar hydrophilic residues within the predicted transmembrane domain are important for virus production. Generation of viruses with restored wild-type helical pitch resulted in increased virus production, but some exhibited decreased virus release. Viruses with the restored helical pitch were more sensitive to treatment with the ion channel inhibitor hexamethylene amiloride than were the more crippled parental viruses with the single alanine insertions, suggesting that disruption of the transmembrane domain affects the functional activity of the protein. Overall the results indicate that the transmembrane domain plays a crucial role during biogenesis of virions.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3