Affiliation:
1. Department of Microbiology, University of Texas, Austin, Texas
Abstract
Hodson, Phillip
H. (University of Texas, Austin),
and J. W. Foster
. Dipicolinic acid synthesis in
Penicillium citreo-viride
. J. Bacteriol.
91:
562–569. 1966.—Dipicolinic acid (DPA) accumulation in culture filtrates of the mold
Penicillium citreo-viride
was studied in surface and submerged cultures. Good DPA yields were obtained in suspensions of washed, submerged mycelium in the presence of a carbon and a nitrogen source but in the absence of other minerals essential for growth. Fumaric acid was the only other acid formed in significant amounts. Glucose and glycerol were superior to various salts of organic acids as carbon sources, and certain amino acids were excellent nitrogen sources.
l
-Leucine,
l
-norvaline,
l
-tyrosine, and
l
-histidine were superior to urea, NH
4
Cl, or NaNO
3
as nitrogen precursors for DPA production.
d
-Norvaline was useless for DPA production. Glycerol-
2-C
14
and -
1-C
14
, C
14
O
2
, and
l
-leucine-
C
14
,
l
-tyrosine-
C
14
, and
l
-histidine-
C
14
were tested as precursors in conjunction with suitable carbon and nitrogen sources. The DPA was decarboxylated chemically, and the distribution of C
14
was determined in the pyridine-C and in the carboxyl-C. The data are consistent with Martin and Foster's suggestion for bacteria that the DPA molecule is formed by a condensation of C
3
plus C
4
precursors, the resulting 2-keto, 6-aminopimelic acid derivate undergoing ring closure to form a heterocyclic precursor of DPA. The C
14
O
2
experiments indicate that oxaloacetate is formed by β-carboxylation of pyruvate, this in turn probably becoming aspartic acid β-semialdehyde, the C
4
compound which condenses with a second pyruvate. The enhancement of DPA formation by
l
-norvaline,
l
-leucine, and
l
-histidine is not ascribable to their functioning either as a source of nitrogen or carbon.
l
-Tyrosine, in a glycerol medium, contributed nearly 40% of the DPA carbon. The mechanism of biosynthesis of C
7
straight-chain and cyclic compounds is discussed.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献