FAD-I, a Fusobacterium nucleatum Cell Wall-Associated Diacylated Lipoprotein That Mediates Human Beta Defensin 2 Induction through Toll-Like Receptor-1/2 (TLR-1/2) and TLR-2/6

Author:

Bhattacharyya Sanghamitra1,Ghosh Santosh K.1ORCID,Shokeen Bhumika2,Eapan Betty1,Lux Renate2,Kiselar Janna3,Nithianantham Stanley1,Young Andrew4,Pandiyan Pushpa1,McCormick Thomas S.14,Weinberg Aaron1

Affiliation:

1. Department of Biological Science, Case School of Dental Medicine, Cleveland, Ohio, USA

2. School of Dentistry, University of California—Los Angeles, Los Angeles, California, USA

3. Center for Proteomics, Case School of Medicine, Cleveland, Ohio, USA

4. Department of Dermatology, Case School of Medicine, Cleveland, Ohio, USA

Abstract

ABSTRACT We previously identified a cell wall-associated protein from Fusobacterium nucleatum , a Gram-negative bacterium of the oral cavity, that induces human beta defensin 2 (hBD-2) in primary human oral epithelial cells (HOECs) and designated it FAD-I ( F usobacterium - a ssociated d efensin i nducer). Here, we report differential induction of hBD-2 by different strains of F. nucleatum ; ATCC 25586 and ATCC 23726 induce significantly more hBD-2 mRNA than ATCC 10953. Heterologous expression of plasmid-borne fadI from the highly hBD-2-inducing strains in a Δ fadI mutant of ATCC 10953 resulted in hBD-2 induction to levels comparable to those of the highly inducing strains, indicating that FAD-I is the principal F. nucleatum agent for hBD-2 induction in HOECs. Moreover, anti-FAD-I antibodies blocked F. nucleatum induction of hBD-2 by more than 80%. Recombinant FAD-I (rFAD-I) expressed in Escherichia coli triggered levels of hBD-2 transcription and peptide release in HOECs similar to those of native FAD-I (nFAD-I) isolated from F. nucleatum ATCC 25586. Tandem mass spectrometry revealed a diacylglycerol modification at the cysteine residue in position 16 for both nFAD-I and rFAD-I. Cysteine-to-alanine substitution abrogated FAD-I's ability to induce hBD-2. Finally, FAD-I activation of hBD-2 expression was mediated via both Toll-like receptor-1/2 (TLR-1/2) and TLR-2/6 heterodimerization. Microbial molecules like FAD-I may be utilized in novel therapeutic ways to bolster the host innate immune response at mucosal surfaces.

Funder

HHS | NIH | National Institute of Dental and Craniofacial Research

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3