Replication of Mus dunni Endogenous Retrovirus Depends on Promoter Activation Followed by Enhancer Multimerization

Author:

Wolgamot Greg123,Miller A. Dusty12

Affiliation:

1. Fred Hutchinson Cancer Research Center, Seattle, Washington 98109,1 and

2. Department of Pathology2 and

3. Medical Scientist Training Program,3University of Washington, Seattle, Washington 98195

Abstract

ABSTRACT Mus dunni endogenous virus (MDEV) is an apparently intact retrovirus that normally lies transcriptionally silent in cultured M. dunni cells, but the provirus can be activated by treatment of the cells with hydrocortisone or 5-iodo-2′-deoxyuridine. Sequence analysis of a molecular clone of the replicating virus revealed a simple retrovirus with a chimeric VL30/GALV-like structure. Interestingly, in the region of the long terminal repeat (LTR) that typically contains the retroviral transcription enhancers, we found over six 80-bp repeats with only a single mismatch, indicating that acquisition of the repeats was a recent event. Here we provide evidence for the following model of MDEV activation and replication. The MDEV provirus in M. dunni cells has a chimeric structure similar to that of the molecular clone but has only 1.15 copies of the 80-bp repeat sequence found in the molecular clone. Activating chemicals directly stimulate transcription from the LTR, allowing a low level of virus replication. Copying errors made during reverse transcription allow multimerization of the 80-bp enhancer region, resulting in viruses with higher transcriptional rates and improved fitness, but increased enhancer copy number is likely balanced by the natural instability of retroviral repeats and constraints imposed by virion packaging limits. The resultant population of replicating MDEV is widely heterogeneous, having from 2.15 to 13.15 enhancer repeats in the LTR. These results reveal a novel mechanism for regulation of transcription and replication of an endogenous retrovirus, in terms of both activation of the virus by the steroid hydrocortisone and the large number and variation in enhancer repeats observed.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3