Latent Adeno-Associated Virus Infection Elicits Humoral but Not Cell-Mediated Immune Responses in a Nonhuman Primate Model

Author:

Hernandez Yosbani J.123,Wang Jianming123,Kearns William G.4,Loiler Scott123,Poirier Amy123,Flotte Terence R.123

Affiliation:

1. Gene Therapy Center1 and

2. Departments of Pediatrics2 and

3. Molecular Genetics and Microbiology,3University of Florida College of Medicine, Gainesville, Florida 32610, and

4. Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 212874

Abstract

ABSTRACT Latent infection with wild-type (wt) adeno-associated virus (AAV) was studied in rhesus macaques, a species that is a natural host for AAV and that has some homology to humans with respect to the preferred locus for wt AAV integration. Each of eight animals was infected with an inoculum of 10 10 IU of wt AAV, administered by either the intranasal, intramuscular, or intravenous route. Two additional animals were infected intranasally with wt AAV and a helper adenovirus (Ad), while one additional animal was inoculated with saline intranasally as a control. There were no detectable clinical or histopathologic responses to wt AAV administration. Molecular analyses, including Southern blot, PCR, and fluorescence in situ hybridization, were performed 21 days after infection. These studies indicated that AAV DNA sequences persisted at the sites of administration, albeit at low copy number, and in peripheral blood mononuclear cells. Site-specific integration into the AAVS1-like locus was observed in a subset of animals. All animals, except those infected by the intranasal route with wt AAV alone, developed a humoral immune response to wt AAV capsid proteins, as evidenced by a ≥fourfold rise in anti-AAV neutralizing titers. However, only animals infected with both wt AAV and Ad developed cell-mediated immune responses to AAV capsid proteins. These findings provide some insights into the nature of anti-AAV immune responses that may be useful in interpreting results of future AAV-based gene transfer studies.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3