Requirement of the Type II Secretion System for Utilization of Cellulosic Substrates by Cellvibrio japonicus

Author:

Gardner Jeffrey G.1,Keating David H.1

Affiliation:

1. DOE Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, 3552 Microbial Sciences Building, 1550 Linden Drive, Madison, Wisconsin 53706

Abstract

ABSTRACT Cellulosic biofuels represent a powerful alternative to petroleum but are currently limited by the inefficiencies of the conversion process. While Gram-positive and fungal organisms have been widely explored as sources of cellulases and hemicellulases for biomass degradation, Gram-negative organisms have received less experimental attention. We investigated the ability of Cellvibrio japonicus , a recently sequenced Gram-negative cellulolytic bacterium, to degrade bioenergy-related feedstocks. Using a newly developed biomass medium, we showed that C. japonicus is able to utilize corn stover and switchgrass as sole sources of carbon and energy for growth. We also developed tools for directed gene disruptions in C. japonicus and used this system to construct a mutant in the gspD gene, which is predicted to encode a component of the type II secretion system. The gspD ::pJGG1 mutant displayed a greater-than-2-fold decrease in endoglucanase secretion compared to wild- type C. japonicus . In addition, the mutant strain showed a pronounced growth defect in medium with biomass as a carbon source, yielding 100-fold fewer viable cells than the wild type. To test the potential of C. japonicus to undergo metabolic engineering, we constructed a strain able to produce small amounts of ethanol from biomass. Collectively, these data suggest that C. japonicus is a useful platform for biomass conversion and biofuel production.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3