Analysis of proteins encoded by the ptx and ptl genes of Bordetella bronchiseptica and Bordetella parapertussis

Author:

Hausman S Z1,Cherry J D1,Heininger U1,Wirsing von König C H1,Burns D L1

Affiliation:

1. Division of Bacterial Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA.

Abstract

Bordetella pertussis is the only bacteria] species which is known to produce pertussis toxin (PT); however, both Bordetella bronchiseptica and Bordetella parapertussis contain regions homologous to the ptx genes of B. pertussis that encode the toxin subunits. After finding that several children with B. parapertussis infections exhibited modest antibody titers to PT, we examined the ptx genes of both B. parapertussis and B. bronchiseptica to determine whether they would encode stable, functional proteins even though their promoters are thought to be inactive under the conditions that have been examined. We inserted a functional promoter directly upstream of the ptx-ptl region of both species and examined culture supernatants of the resulting strains for PT activity. Biologically active PT was found in the culture supernatants of both engineered species. The toxin encoded by the B. parapertussis ptx genes appeared more labile in culture supernatants than did toxin produced by either B. pertussis or the engineered strain of B. bronchiseptica. This lability might be due to the lack of a full-length S2 subunit. We also investigated the ptl genes of these species, which are necessary for the secretion of this toxin, and found that both B. bronchiseptica and B. parapertussis contain at least certain of these genes, including ptlE and ptlF. Moreover, B. bronchiseptica appeared to contain all essential ptl genes since the introduction of a functional promoter directly upstream of the ptx-ptl region resulted in both production and efficient secretion of toxin. These results indicate that despite a number of amino acid changes in the sequences of the toxins, the toxins encoded by B. bronchiseptica and B. parapertussis are active.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3