Gamma interferon protects endothelial cells from damage by Candida albicans by inhibiting endothelial cell phagocytosis

Author:

Fratti R A1,Ghannoum M A1,Edwards J E1,Filler S G1

Affiliation:

1. Department of Internal Medicine, Harbor-UCLA Research and Education Institute, St. John's Cardiovascular Research Center, Torrance, California 90509, USA.

Abstract

Once Candida albicans comes in contact with endothelial cells, it induces cellular injury. This endothelial cell injury may be a mechanism by which blood-borne organisms escape from the intravascular compartment and invade the tissue parenchyma during hematogenous infection. We have been investigating the ability of cytokines to modulate endothelial cell injury caused by C. albicans. Previously we reported that pretreatment of endothelial cells with gamma interferon (IFN-gamma) protects these cells from candidal injury in vitro. In the current study, we examined potential mechanisms of the cytoprotective effects of IFN-gamma. Time course experiments demonstrated that maximal reduction in candidal injury of endothelial cells occurred after the endothelial cells had been exposed to IFN-gamma for at least 72 h. In other studies, we determined that IFN-gamma reduced endothelial cell phagocytosis of C. albicans by 41.3% compared with that of untreated endothelial cells (P < 0.01). Since endothelial cell phagocytosis of C. albicans is required for damage to occur, inhibition of phagocytosis is likely a mechanism by which IFN-gamma protects endothelial cells from candidal injury. We also found that the cytoprotective effect of IFN-gamma is not mediated by reducing access of the organisms to intracellular endothelial cell iron or by upregulating the synthesis of reactive oxygen intermediates (which could potentially reduce the ability of C. albicans to injure endothelial cells). Thus, inhibiting endothelial cell phagocytosis of C. albicans may be a mechanism by which IFN-gamma augments the host defense against hematogenously disseminated candidal infections.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3