An interleukin-6-induced acute-phase response does not confer protection against lipopolysaccharide lethality

Author:

Bucklin S E1,Silverstein R1,Morrison D C1

Affiliation:

1. Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City 66160.

Abstract

Lipopolysaccharide (LPS), a component of gram-negative bacterial outer cell walls, can stimulate lymphoreticular cells to produce cytokines such as tumor necrosis factor alpha (TNF-alpha), interleukin-1 (IL-1), and IL-6. One of these proinflammatory cytokines, IL-6, induces hepatic synthesis of a class of proteins termed acute-phase proteins. D-Galactosamine inhibits acute-phase protein synthesis and concurrently sensitizes mice to a lethal dose of LPS approximately 10,000-fold. From these observations, we hypothesized that the acute-phase response may serve as a defense mechanism for protection of the host against the deleterious effects of LPS. To test this hypothesis, murine recombinant IL-6 (mrIL-6) was used to induce an acute-phase response prior to a lethal LPS challenge in both D-galactosamine-treated and normal mice. Induction of the acute-phase response by mrIL-6 was quantitated by measuring the concentrations of fibrinogen and complement component C3, two well-characterized acute-phase proteins, in the circulation. The effect of acute-phase and normal serum on TNF-alpha release by peritoneal macrophages stimulated with LPS in vitro was also examined. The results of these studies confirmed the induction of the acute-phase response by mrIL-6, as reflected in an approximate doubling in circulating levels of fibrinogen and C3. However, when either D-galactosamine-sensitized or normal mice were challenged with a lethal dose of LPS at various times after mrIL-6 administration, the acute-phase response induced by mrIL-6 did not alter either cumulative lethality or the kinetics of lethality. Additionally, compared with normal serum, acute-phase serum did not affect TNF-alpha release by peritoneal macrophages following LPS-mediated stimulation in vitro. Collectively, these studies would not support a dominant role for an IL-6-mediated acute-phase response as contributing to the resistance of normal mice compared with D-galactosamine-sensitized mice in LPS-induced lethal toxicity.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3