Characterization of a phase I Coxiella burnetii chloroform-methanol residue vaccine that induces active immunity against Q fever in C57BL/10 ScN mice

Author:

Williams J C,Damrow T A,Waag D M,Amano K

Abstract

The effect of phase I Coxiella burnetii chloroform-methanol residue vaccine (CMRV) on the response of murine splenic lymphocytes to mitogenic and antigenic stimuli was evaluated in C57BL/10 ScN endotoxinnonresponder mice with an in vitro lymphocyte proliferation assay. Intraperitoneal injection of phase I CMRV resulted in antibody production against phases I and II antigens. Lymphocytes were responsive in vitro to concanavalin A, phytohemagglutinin, pokeweed mitogen, and specific recall antigens. Antibodies against phases I and II antigens were not detected after intraperitoneal injection of chloroform-methanol extract (CME). Lymphocytes also were only slightly hyporesponsive to mitogens. Reconstitution of the CMRV with the CME of phase I whole cells restored the immunopathological reactions that were associated with the phase I whole cell vaccine (WCV). The CMRV was more mitogenic than the WCV for lymphocytes from mice injected with saline. Lymphocytes from phase I WCV-injected mice were negatively modulated with nontoxic concentrations of homologous WCV or CMRV. Lymphocytes from phase I CMRV-injected mice were only slightly hyporesponsive to mitogens and were significantly stimulated by antigens of either WCV or CMRV as recall antigens. Vaccination of mice with 100 micrograms of CMRV, CME, or WCV provided 80, 0, or 50% protection, respectively, against a lethal intraperitoneal challenge with viable phase I C. burnetii. The epitopes which induce immunological hyporesponsiveness, negative modulation, and the death of lymphocytes were fractionated into the CMRV and CME. The CMRV provides at least one of the determinants which induce immunosuppression, whereas CME contains specific or nonspecific components or both. Collectively, these results show that the CMRV may be a potential candidate to replace the WCV currently used for human vaccination.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3