Author:
Caugant D A,Mocca L F,Frasch C E,Frøholm L O,Zollinger W D,Selander R K
Abstract
The genetic structure of populations of Neisseria meningitidis was examined by an analysis of electrophoretically demonstrable allelic variation at 15 genes encoding enzymes in 650 isolates of eight serogroups (A, B, C, W135, X, Y, Z, and 29E) and 38 nonserogroupable isolates. A total of 331 distinctive multilocus genotypes (electrophoretic types, ETs) was identified, among which mean genetic diversity per locus (H = 0.547) was greater than in Escherichia coli and other bacterial species thus far studied. The intercontinental distribution of some ETs and the recovery of organisms of identical genotype over periods of many years strongly suggest that the genetic structure of N. meningitidis is basically clonal as a consequence of low rates of recombination of chromosomal genes. Variation among strains in serogroup, serotype, and the electrophoretic pattern of the major outer membrane proteins has little relationship to the complex structure of populations revealed by enzyme electrophoresis, which involves 14 major lineages of clones diverging from one another at genetic distances greater than 0.50. Genetic diversity among ETs of isolates of the same serogroup was, on average, 84% of that in the total sample. Clones of serogroup A were unusual in being genotypically less heterogeneous than those of other serogroups and in forming a single phylogenetic group. Isolates of the same serotype or outer membrane protein pattern were also highly heterogeneous; on average, 87 and 97%, respectively, of the total species diversity was represented by ETs of the same serotype or outer membrane protein.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
243 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献