Inactivation of KsgA, a 16S rRNA Methyltransferase, Causes Vigorous Emergence of Mutants with High-Level Kasugamycin Resistance

Author:

Ochi Kozo1,Kim Ji-Yun12,Tanaka Yukinori13,Wang Guojun1,Masuda Kenta4,Nanamiya Hideaki4,Okamoto Susumu1,Tokuyama Shinji3,Adachi Yoshikazu2,Kawamura Fujio4

Affiliation:

1. National Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan

2. Laboratory of Animal Health, School of Agriculture, Ibaraki University, Ami, Ibaraki 300-0393, Japan

3. Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, Ohya, Shizuoka 422-8529, Japan

4. Laboratory of Molecular Genetics and Research Information Center for Extremophiles, College of Science, Rikkyo University, Tokyo 171-8501, Japan

Abstract

ABSTRACT The methyltransferases RsmG and KsgA methylate the nucleotides G535 (RsmG) and A1518 and A1519 (KsgA) in 16S rRNA, and inactivation of the proteins by introducing mutations results in acquisition of low-level resistance to streptomycin and kasugamycin, respectively. In a Bacillus subtilis strain harboring a single rrn operon ( rrnO ), we found that spontaneous ksgA mutations conferring a modest level of resistance to kasugamycin occur at a high frequency of 10 −6 . More importantly, we also found that once cells acquire the ksgA mutations, they produce high-level kasugamycin resistance at an extraordinarily high frequency (100-fold greater frequency than that observed in the ksgA + strain), a phenomenon previously reported for rsmG mutants. This was not the case for other antibiotic resistance mutations (Tsp r and Rif r ), indicating that the high frequency of emergence of a mutation for high-level kasugamycin resistance in the genetic background of ksgA is not due simply to increased persistence of the ksgA strain. Comparative genome sequencing showed that a mutation in the speD gene encoding S -adenosylmethionine decarboxylase is responsible for the observed high-level kasugamycin resistance. ksgA speD double mutants showed a markedly reduced level of intracellular spermidine, underlying the mechanism of high-level resistance. A growth competition assay indicated that, unlike rsmG mutation, the ksgA mutation is disadvantageous for overall growth fitness. This study clarified the similarities and differences between ksgA mutation and rsmG mutation, both of which share a common characteristic—failure to methylate the bases of 16S rRNA. Coexistence of the ksgA mutation and the rsmG mutation allowed cell viability. We propose that the ksgA mutation, together with the rsmG mutation, may provide a novel clue to uncover a still-unknown mechanism of mutation and ribosomal function.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3