Transfection of Sclerotinia sclerotiorum withIn VitroTranscripts of a Naturally Occurring Interspecific Recombinant of Sclerotinia sclerotiorum Hypovirus 2 Significantly Reduces Virulence of the Fungus

Author:

Marzano Shin-Yi Lee,Hobbs Houston A.,Nelson Berlin D.,Hartman Glen L.,Eastburn Darin M.,McCoppin Nancy K.,Domier Leslie L.

Abstract

ABSTRACTA recombinant strain ofSclerotinia sclerotiorumhypovirus 2 (SsHV2) was identified from a North AmericanSclerotinia sclerotiorumisolate (328) from lettuce (Lactuca sativaL.) by high-throughput sequencing of total RNA. The 5′- and 3′-terminal regions of the genome were determined by rapid amplification of cDNA ends. The assembled nucleotide sequence was up to 92% identical to two recently reported SsHV2 strains but contained a deletion near its 5′ terminus of more than 1.2 kb relative to the other SsHV2 strains and an insertion of 524 nucleotides (nt) that was distantly related toValsa ceratospermahypovirus 1. This suggests that the new isolate is a heterologous recombinant of SsHV2 with a yet-uncharacterized hypovirus. We named the new strainSclerotinia sclerotiorumhypovirus 2 Lactuca (SsHV2L) and deposited the sequence in GenBank with accession numberKF898354.Sclerotinia sclerotiorumisolate 328 was coinfected with a strain ofSclerotinia sclerotiorumendornavirus 1 and was debilitated compared to cultures of the same isolate that had been cured of virus infection by cycloheximide treatment and hyphal tipping. To determine whether SsHV2L alone could induce hypovirulence inS. sclerotiorum, a full-length cDNA of the 14,538-nt viral genome was cloned. Transcripts corresponding to the viral RNA were synthesizedin vitroand transfected into a virus-free isolate ofS. sclerotiorum, DK3. Isolate DK3 transfected with SsHV2L was hypovirulent on soybean and lettuce and exhibited delayed maturation of sclerotia relative to virus-free DK3, completing Koch's postulates for the association of hypovirulence with SsHV2L.IMPORTANCEA cosmopolitan fungus,Sclerotinia sclerotioruminfects more than 400 plant species and causes a plant disease known as white mold that produces significant yield losses in major crops annually. Mycoviruses have been used successfully to reduce losses caused by fungal plant pathogens, but definitive relationships between hypovirus infections and hypovirulence inS. sclerotiorumwere lacking. By establishing a cause-and-effect relationship betweenSclerotinia sclerotiorumhypovirus Lactuca (SsHV2L) infection and the reduction in host virulence, we showed direct evidence that hypoviruses have the potential to reduce the severity of white mold disease. In addition to intraspecific recombination, this study showed that recent interspecific recombination is an important factor shaping viral genomes. The construction of an infectious clone of SsHV2L allows future exploration of the interactions between SsHV2L andS. sclerotiorum, a widespread fungal pathogen of plants.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3