Streptozocin-Induced Diabetic Mouse Model of Urinary Tract Infection

Author:

Rosen David A.1,Hung Chia-Suei1,Kline Kimberly A.1,Hultgren Scott J.1

Affiliation:

1. Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110

Abstract

ABSTRACT Diabetics have a higher incidence of urinary tract infection (UTI), are infected with a broader range of uropathogens, and more commonly develop serious UTI sequelae than nondiabetics. To better study UTI in the diabetic host, we created and characterized a murine model of diabetic UTI using the pancreatic islet β-cell toxin streptozocin in C3H/HeN, C3H/HeJ, and C57BL/6 mouse backgrounds. Intraperitoneal injections of streptozocin were used to initiate diabetes in healthy mouse backgrounds, as defined by consecutive blood glucose levels of >250 mg/dl. UTIs caused by uropathogenic Escherichia coli (UTI89), Klebsiella pneumoniae (TOP52 1721), and Enterococcus faecalis (0852) were studied, and diabetic mice were found to be considerably more susceptible to infection. All three uropathogens produced significantly higher bladder and kidney titers than buffer-treated controls. Uropathogens did not have as large an advantage in the Toll-like receptor 4-defective C3H/HeJ diabetic mouse, arguing that the dramatic increase in colonization seen in C3H/HeN diabetic mice may partially be due to diabetic-induced defects in innate immunity. Competition experiments demonstrated that E. coli had a significant advantage over K. pneumoniae in the bladders of healthy mice and less of an advantage in diabetic bladders. In the kidneys, K. pneumoniae outcompeted E. coli in healthy mice but in diabetic mice E. coli outcompeted K. pneumoniae and caused severe pyelonephritis. Diabetic kidneys contained renal tubules laden with communities of E. coli UTI89 bacteria within an extracellular-matrix material. Diabetic mice also had glucosuria, which may enhance bacterial replication in the urinary tract. These data support that this murine diabetic UTI model is consistent with known characteristics of human diabetic UTI and can provide a powerful tool for dissecting this infection in the multifactorial setting of diabetes.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3