Affiliation:
1. Département de Microbiologie, Centre de Recherche du Centre Hospitalier de l'Université, Ste-Foy, Québec, Canada.
Abstract
By using whole-cell labeling assay with 125I-penicillin V, we observed a reduction in the binding of the radiolabeled beta-lactam to four or five penicillin-binding proteins (PBPs) in Haemophilus influenzae cells cultivated under specific conditions. PBPs 3A, 3B, 4, and 6 were altered after the growth of bacteria in diffusion chambers implanted in the peritoneal cavity of rats. PBP 2 was also modified when cells were cultivated in human cerebrospinal fluids. Because this observation may have important consequences on the efficacy of beta-lactams during antibiotic therapy, we characterized the physiological state of bacteria cultivated in animals in the hope of explaining how such important changes in cell properties develop in vivo. Since the development of natural genetic competence occurs at the stationary phase of growth in H. influenzae, we used a DNA transformation assay to evaluate the physiological state of bacteria grown in diffusion chambers implanted in rats. Chromosomal DNA isolated from an antibiotic-resistant donor strain was mixed with bacteria in diffusion chambers. At different times during a 5-h incubation period, recipient bacteria were collected from the chambers, CFU were determined by plate counting, and antibiotic-resistant transformants were isolated on selective plates. Genetic competence rapidly developed in cells grown in rats, and the frequency of transformation by test DNA was elevated. Electron microscopy revealed an irregular cell shape and blebs at the surface of bacteria cultivated in animals and in cerebrospinal fluids. In an attempt to induce a similar physiological state in vitro, we supplemented broth cultures with cyclic AMP or synchronized cultures by a nutritional upshift. No changes in PBPs were observed with supplemental cyclic AMP or during a single cell cycle. Finally, a reduction in the affinity of PBPs for 125I-penicillin V identical to that observed in bacteria grown in rats was observed in cells isolated from the stationary phase of growth in vitro. These results clearly indicate that H. influenzae cells grown in animals undergo a rapid change to a physiological state similar to that found in late-stationary-phase cultures in vitro. This observation indicates that the rational design of future and improved antibiotic therapy of H. influenzae infections should consider cell properties of slow-growing or latent bacteria.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献