Mucin degradation in the human colon: production of sialidase, sialate O-acetylesterase, N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities by strains of fecal bacteria

Author:

Corfield A P1,Wagner S A1,Clamp J R1,Kriaris M S1,Hoskins L C1

Affiliation:

1. University Department of Medicine Laboratories, Bristol Royal Infirmary, United Kingdom.

Abstract

Oligosaccharide side chains of human colonic mucins contain O-acetylated sialic acids and glycosulfate esters. Although these substituents are considered to protect the chains against degradation by bacterial glycosidases, sialate O-acetylesterase, N-acetylneuraminate lyase, and glycosulfatase activities have been found in fecal extracts. To better define the source of these activities, we measured extracellular and cell-bound sialidase, sialate O-acetylesterase, N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities produced by 23 isolates of human fecal bacteria grown anaerobically in a hog gastric mucin culture medium; these represented dominant populations of fecal anaerobes, facultative anaerobes, and the subset of mucin oligosaccharide-degrading bacteria. Every strain produced sialidase and high levels of arylesterase, and all but five facultative anaerobes produced sialate O-acetylesterase. Sialic acids containing 2 mol or more of O-acetyl ester per mol of sialic acid were cleaved from mucin glycoproteins more slowly by sialidases of mucin oligosaccharide-degrading stains than were sialic acids containing 1 or 0 mol, and only N-acetyl- and mono-O-acetylated sialic acids were recovered from enzyme digests of a mucin containing di-O-acetylated sialic acids. No detectable N-acetylneuraminate lyase activity was produced by any strain, but low activity was induced by increasing the glycoprotein-bound sialic acid concentration in the culture medium of six Escherichia coli strains. Using lactitol-6-sulfate as a substrate, we found weak glycosulfatase activity in the partially purified, concentrated enzyme mixture in the culture supernatants of four mucin oligosaccharide-degrading strains but in none of the unconcentrated culture fractions. We conclude that the presence of two or more O-acetyl groups on sialic acids inhibits enteric bacterial sialidases but that production of sialate O-acetylesterases by several populations of enteric bacteria lessens the likelihood that mucin oligosaccharide chains terminating in O-acetylated sialic acids are protected from degradation. Sialate O-acetylesterases have a role in bacterial degradation of mucin glycoproteins in the human colon.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference52 articles.

1. Allen A. and L. C. Hoskdns. 1988. Colonic mucus in health and disease p. 65-94. In J. B. Kirsner and R. G. Shorter (ed.) Diseases of the colon rectum and anal canal. The Williams & Wilkins Co. Baltimore.

2. Allen A. D. A. Hutton J. P. Pearson and L A. Sellars. 1990. The colonic mucus gel barrier: structure gel formation and degradation. p. 113-125. In T. J. Peters (ed.) The cell biology of inflammation in the gastrointestinal tract. Corners Publications Hull United Kingdom.

3. Mucous glycoproteins: a gel of a problem;Carlstedt L;Essays Biochem.,1985

4. Chemical aspects of mucus;Clamp J. R.;Br. Med. Bull.,1978

5. The metabolism of sialic acids in isolated rat colonic mucosal cells;Corfield A. P.;Biochem. J.,1985

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3