Regulation of Gene Expression in Diverse Cyanobacterial Species by Using Theophylline-Responsive Riboswitches

Author:

Ma Amy T.,Schmidt Calvin M.,Golden James W.

Abstract

ABSTRACTCyanobacteria are photosynthetic bacteria that are currently being developed as biological production platforms. They derive energy from light and carbon from atmospheric carbon dioxide, and some species can fix atmospheric nitrogen. One advantage of developing cyanobacteria for renewable production of biofuels and other biological products is that they are amenable to genetic manipulation, facilitating bioengineering and synthetic biology. To expand the currently available genetic toolkit, we have demonstrated the utility of synthetic theophylline-responsive riboswitches for effective regulation of gene expression in four diverse species of cyanobacteria, including two recent isolates. We evaluated a set of six riboswitches driving the expression of a yellow fluorescent protein reporter inSynechococcus elongatusPCC 7942,Leptolyngbyasp. strain BL0902,Anabaenasp. strain PCC 7120, andSynechocystissp. strain WHSyn. We demonstrated that riboswitches can offer regulation of gene expression superior to that of the commonly used isopropyl-β-d-thiogalactopyranoside induction of alacIq-Ptrcpromoter system. We also showed that expression of the toxic protein SacB can be effectively regulated, demonstrating utility for riboswitch regulation of proteins that are detrimental to biomass accumulation. Taken together, the results of this work demonstrate the utility and ease of use of riboswitches in the context of genetic engineering and synthetic biology in diverse cyanobacteria, which will facilitate the development of algal biotechnology.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 114 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3