Recruitment of the Nucleotide Excision Repair Endonuclease XPG to Sites of UV-Induced DNA Damage Depends on Functional TFIIH

Author:

Zotter Angelika1,Luijsterburg Martijn S.2,Warmerdam Daniël O.2,Ibrahim Shehu13,Nigg Alex3,van Cappellen Wiggert A.4,Hoeijmakers Jan H. J.1,van Driel Roel2,Vermeulen Wim1,Houtsmuller Adriaan B.3

Affiliation:

1. Department of Cell Biology and Genetics, Erasmus MC Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands

2. Swammerdam Institute for Life Sciences, BioCentrum Amsterdam, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands

3. Department of Pathology, Josephine Nefkens Institute, Erasmus MC Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands

4. Department of Endocrinology and Reproduction, Erasmus MC Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands

Abstract

ABSTRACT The structure-specific endonuclease XPG is an indispensable core protein of the nucleotide excision repair (NER) machinery. XPG cleaves the DNA strand at the 3′ side of the DNA damage. XPG binding stabilizes the NER preincision complex and is essential for the 5′ incision by the ERCC1/XPF endonuclease. We have studied the dynamic role of XPG in its different cellular functions in living cells. We have created mammalian cell lines that lack functional endogenous XPG and stably express enhanced green fluorescent protein (eGFP)-tagged XPG. Life cell imaging shows that in undamaged cells XPG-eGFP is uniformly distributed throughout the cell nucleus, diffuses freely, and is not stably associated with other nuclear proteins. XPG is recruited to UV-damaged DNA with a half-life of 200 s and is bound for 4 min in NER complexes. Recruitment requires functional TFIIH, although some TFIIH mutants allow slow XPG recruitment. Remarkably, binding of XPG to damaged DNA does not require the DDB2 protein, which is thought to enhance damage recognition by NER factor XPC. Together, our data present a comprehensive view of the in vivo behavior of a protein that is involved in a complex chromatin-associated process.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3