Identification and Elimination of the Competing N -Acetyldiaminopentane Pathway for Improved Production of Diaminopentane by Corynebacterium glutamicum

Author:

Kind Stefanie1,Jeong Weol Kyu2,Schröder Hartwig2,Zelder Oskar2,Wittmann Christoph1

Affiliation:

1. Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany

2. BASF SE, Fine Chemicals and Biotechnology, Ludwigshafen, Germany

Abstract

ABSTRACT The present work describes the development of a superior strain of Corynebacterium glutamicum for diaminopentane (cadaverine) production aimed at the identification and deletion of the underlying unknown N -acetyldiaminopentane pathway. This acetylated product variant, recently discovered, is a highly undesired by-product with respect to carbon yield and product purity. Initial studies with C. glutamicum DAP-3c, a previously derived tailor-made diaminopentane producer, showed that up to 20% of the product occurs in the unfavorable acetylated form. The strain revealed enzymatic activity for diaminopentane acetylation, requiring acetyl-coenzyme A (CoA) as a donor. Comparative transcriptome analysis of DAP-3c and its parent strain did not reveal significant differences in the expression levels of 17 potential candidates annotated as N -acetyltransferases. Targeted single deletion of several of the candidate genes showed NCgl1469 to be the responsible enzyme. NCgl1469 was functionally assigned as diaminopentane acetyltransferase. The deletion strain, designated C. glutamicum DAP-4, exhibited a complete lack of N -acetyldiaminopentane accumulation in medium. Hereby, the yield for diaminopentane increased by 11%. The mutant strain allowed the production of diaminopentane as the sole product. The deletion did not cause any negative growth effects, since the specific growth rate and glucose uptake rate remained unchanged. The identification and elimination of the responsible acetyltransferase gene, as presented here, display key contributions of a superior C. glutamicum strain producing diaminopentane as a future building block for bio-based polyamides.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3