Differentiation of M1 Myeloid Precursor Cells into Macrophages Results in Binding and Infection by Theiler’s Murine Encephalomyelitis Virus and Apoptosis

Author:

Jelachich M. L.1,Bramlage C.1,Lipton H. L.1

Affiliation:

1. Evanston Northwestern Healthcare Research Institute and Northwestern University, Evanston, Illinois 60201

Abstract

ABSTRACT Infection of susceptible mouse strains with BeAn, a less virulent strain of Theiler’s murine encephalomyelitis virus (TMEV), results in immune system-mediated demyelinating lesions in the central nervous system (CNS) similar to those in multiple sclerosis. Since macrophages appear to carry the major detectable antigen burden in vivo, and purification of sufficient cell numbers from the CNS for detailed analysis is difficult, macrophage-like cell lines provide an accessible system with which to study virus-macrophage interactions. The myeloid precursor cell line M1 differentiates in response to cytokines and expresses many characteristics of tissue macrophages. Incubation of TMEV with undifferentiated M1 cells produced neither infection nor apoptosis, whereas differentiated M1 (M1-D) cells developed a restricted virus infection and changes indicative of apoptosis. Virus binding and RNA replication as well as cellular production of alpha/beta interferons increased with differentiation. Although the amount of infectious virus was highly restricted, BeAn-infected M1-D cells synthesized and appropriately processed virus capsid proteins at levels comparable to those for permissive BHK-21 cells. Analysis of Bcl-2 protein family expression in undifferentiated and differentiated cells suggests that susceptibility of M1-D cells to apoptosis may be controlled, in part, by expression of the proapoptotic α isoform of Bax and Bak. These data suggest that macrophage differentiation plays a role in susceptibility to TMEV infection and apoptosis.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference50 articles.

1. The Bcl-2 protein family:arbiters of cell survival;Adams J. M.;Science,1998

2. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs;Albert M. L.;Nature,1998

3. Human ICE/CED-3 protease nomenclature;Alnemri E. S.;Cell,1996

4. Auger M. J. Ross J. A. The biology of the macrophage The natural immune system: the macrophage. Lewis C. E. McGee J. O. 1992 3 74 IRL Press New York N.Y

5. Processing of engulfed apoptotic bodies yields T cell epitopes;Bellone M.;J. Immunol.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3