Safety, stability, and efficacy of noncapsulated mutants of Actinobacillus pleuropneumoniae for use in live vaccines

Author:

Inzana T J1,Todd J1,Veit H P1

Affiliation:

1. Veterinary Microbiology Research Laboratories, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg 24061.

Abstract

Clonal, noniridescent mutants of Actinobacillus pleuropneumoniae serotypes 1 and 5 were isolated following chemical mutagenesis with ethyl methanesulfonate. The absence of any detectable capsule was confirmed by inhibition radioimmunoassay. There were no differences between the parent and mutant strains in lipopolysaccharide or protein electrophoretic profiles or in hemolytic activity. There was no detectable reversion to the encapsulated phenotype in vitro after passage in mice or pigs or in microporous capsules that were implanted subcutaneously in pigs for 6 weeks. The mutants were able to survive for more than 1 week in pigs following subcutaneous inoculation, which resulted in a strong immune response to whole cells and Apx toxins I and II. Intratracheal challenge of pigs with the serotype 5 mutant at a dose 1 log greater than the 50% lethal dose for the parent resulted in no clinical disease or lesions except in one pig that had slight pneumonia and pleuritis. Twenty-four hours after challenge, A. pleuropneumoniae could not be recovered from the respiratory tracts of any of the challenged pigs except for the one infected pig; this isolate remained noncapsulated. Immunization of pigs with one or both serotypes of noncapsulated mutants protected all pigs against clinical disease following intratracheal challenge with the virulent homologous or heterologous serotype. Nonimmunized control pigs and pigs immunized with a commercial bacterin died or had to be euthanized within 24 h of challenge. Thus, live noncapsulated mutants of A. pleuropneumoniae may provide safe and cost-effective protection against swine pleuropneumonia. These observations support the possibility that noncapsulated mutants of other encapsulated, toxin-producing bacteria may also prove to be efficacious live-vaccine candidates.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference22 articles.

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3