Stoichiometric Structure-Function Analysis of the Prolactin Receptor Signaling Domain by Receptor Chimeras

Author:

Chang Wan-Pin1,Ye Yihong1,Clevenger Charles V.1

Affiliation:

1. Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104

Abstract

ABSTRACT The intracellular domain of the prolactin (PRL) receptor (PRLr) is required for PRL-induced signaling and proliferation. To identify and test the functional stoichiometry of those PRLr motifs required for transduction and growth, chimeras consisting of the extracellular domain of either the α or β subunit of human granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor (GM-CSFr) and the intracellular domain of the rat PRLr were synthesized. Because the high-affinity binding of GM-CSF results from the specific pairing of one α- and one β-GM-CSFr, use of GM-CSFr/PRLr chimera enabled targeted dimerization of the PRLr intracellular domain. To that end, the extracellular domains of the α- and β-GM-CSFr were conjugated to one of the following mutations: (i) PRLr C-terminal truncations, termed α278, α294, α300, α322, or β322; (ii) PRLr tyrosine replacements, termed Y309F, Y382F, or Y309+382F; or, (iii) PRLr wild-type short, intermediate, or long isoforms. These chimeras were cotransfected into the cytokine-responsive Ba/F3 line, and their expression was confirmed by ligand binding and Northern and Western blot analyses. Data from these studies revealed that heterodimeric complexes of the wild type with C-terminal truncation mutants of the PRLr intracellular domain were incapable of ligand-induced signaling or proliferation. Replacement of any single tyrosine residue (Y309F or Y382F) in the dimerized PRLr complex resulted in a moderate reduction of receptor-associated Jak2 activation and proliferation. In contrast, trans replacement of these residues (i.e., αY309F and βY382F) markedly reduced ligand-driven Jak2 activation and proliferation, while cis replacement of both tyrosine residues in a single intracellular domain (i.e., αY309+382F) produced an inactive signaling complex. Analysis of these GM-CSFr–PRLr complexes revealed equivalent levels of Jak2 in association with the mutant receptor chains, suggesting that the tyrosine residues at 309 and 382 do not contribute to Jak association, but instead to its activation. Heterodimeric pairings of the intracellular domains from the known PRLr receptor isoforms (short-intermediate, short-long, and intermediate-long) also yielded inactive receptor complexes. These data demonstrate that the tyrosine residues at 309 and 382, as well as additional residues within the C terminus of the dimerized PRLr complex, contribute to PRL-driven signaling and proliferation. Furthermore, these findings indicate a functional requirement for the pairing of Y309 and Y382 in trans within the dimerized receptor complex.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Reference67 articles.

1. The Nb2 form of prolactin receptor is able to activate a milk protein gene promoter;Ali S.;Mol. Endocrinol.,1992

2. A prolactin-dependent immune cell line (Nb2) expresses a mutant form of prolactin receptor;Ali S.;J. Biol. Chem.,1991

3. Structural design and molecular evolution of a cytokine receptor superfamily;Bazan J. F.;Proc. Natl. Acad. Sci. USA,1990

4. Suppression of macrophage activation and T-lymphocyte function in hypoprolactinemic mice;Bernton E. W.;Science,1988

5. Identification of a cDNA encoding a long form of prolactin receptor in human hepatoma and breast cancer cells;Boutin J. M.;Mol. Endocrinol.,1989

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3