Infection and Invasion of Roots by Symbiotic, Nitrogen-Fixing Rhizobia during Nodulation of Temperate Legumes

Author:

Gage Daniel J.1

Affiliation:

1. Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269

Abstract

SUMMARY Bacteria belonging to the genera Rhizobium , Mesorhizobium , Sinorhizobium , Bradyrhizobium , and Azorhizobium (collectively referred to as rhizobia) grow in the soil as free-living organisms but can also live as nitrogen-fixing symbionts inside root nodule cells of legume plants. The interactions between several rhizobial species and their host plants have become models for this type of nitrogen-fixing symbiosis. Temperate legumes such as alfalfa, pea, and vetch form indeterminate nodules that arise from root inner and middle cortical cells and grow out from the root via a persistent meristem. During the formation of functional indeterminate nodules, symbiotic bacteria must gain access to the interior of the host root. To get from the outside to the inside, rhizobia grow and divide in tubules called infection threads, which are composite structures derived from the two symbiotic partners. This review focuses on symbiotic infection and invasion during the formation of indeterminate nodules. It summarizes root hair growth, how root hair growth is influenced by rhizobial signaling molecules, infection of root hairs, infection thread extension down root hairs, infection thread growth into root tissue, and the plant and bacterial contributions necessary for infection thread formation and growth. The review also summarizes recent advances concerning the growth dynamics of rhizobial populations in infection threads.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology,Infectious Diseases

Reference194 articles.

1. Able, A. J. 2003. Role of reactive oxygen species in the response of barley to necrotrophic pathogens. Protoplasma221:137-143.

2. Ardourel, M., N. Demont, F. Debelle, F. Maillet, F. de Billy, J. C. Prome, J. Denarie, and G. Truchet. 1994. Rhizobium meliloti lipooligosaccharide nodulation factors: different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses. Plant Cell6:1357-1374.

3. Ausmees, N., K. Jacobsson, and M. Lindberg. 2003. A unipolarly located, cell-surface-associated agglutinin, RapA1, belongs to a family of Rhizobium-adhering proteins (Rap) in Rhizobium leguminosarum bv. trifolii.Microbiology147:549-559.

4. Barnett, M. J., R. F. Fisher, T. Jones, C. Komp, A. P. Abola, F. Barloy-Hubler, L. Bowser, D. Capela, F. Galibert, J. Gouzy, M. Gurjal, A. Hong, L. Huizar, R. W. Hyman, D. Kahn, M. L. Kahn, S. Kalman, D. H. Keating, C. Palm, M. C. Peck, R. Surzycki, D. H. Wells, K. C. Yeh, R. W. Davis, N. A. Federspiel, and S. R. Long. 2001. Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. Proc. Natl. Acad. Sci. USA98:9883-9888.

5. Baron, C., and P. C. Zambryski. 1995. The plant response in pathogenesis, symbiosis, and wounding: variations on a common theme? Annu. Rev. Genet.29:107-129.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3