Abstract
Maximum growth of Campylobacter fetus subsp. jejuni, strain C-61, occurred when the cultures were incubated with shaking in atmospheres containing approximately 30% hydrogen, 5% oxygen, and 10% CO2. Suspensions of cells grown under these conditions consumed oxygen with formate as the substrate in the presence of 0.33 mM cyanide, which completely inhibited respiration with ascorbate-N,N,N',N'-tetramethyl-p-phenylenediamine and with lactate. Spectroscopic evidence with intact cells suggested that a form of cytochrome c, reducible with formate but not with lactate or ascorbate-N,N,N',N'-tetramethyl-p-phenylenediamine, can be reoxidized by a cyanide-insensitive system. Analysis of membranes from the cells showed high- and low-potential forms of cytochrome c, cytochrome b, and various enzymes, including hydrogenase, formate dehydrogenase, and fumarate reductase. The predominant carbon monoxide-binding pigment appeared to be a form of cytochrome c, but the spectra also showed evidence of cytochrome o. The membrane cytochromes were reduced by hydrogen in the presence of 2-heptyl-4-hydroxyquinoline-N-oxide at concentrations which prevented the reduction of cytochrome c with succinate as the electron donor. Reoxidation of the substrate-reduced cytochromes by oxygen was apparently mediated by cyanide-sensitive and cyanide-insensitive systems. The membranes also had hydrogen-fumarate oxidoreductase activity mediated by cytochrome b. We conclude that C. fetus jejuni has high- and low-potential forms of cytochrome which are associated with a complex terminal oxidase system.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献