Porphyromonas gingivalis Exacerbates Ligature-Induced, RANKL-Dependent Alveolar Bone Resorption via Differential Regulation of Toll-Like Receptor 2 (TLR2) and TLR4

Author:

Lin Jiang,Bi Liangjia,Yu Xiaoqian,Kawai Toshihisa,Taubman Martin A.,Shen Baozhong,Han Xiaozhe

Abstract

ABSTRACTToll-like receptors (TLRs) play a key role in the innate immune responses to periodontal pathogens in periodontal disease. The present study was performed to determine the roles of TLR2 and TLR4 signaling in alveolar bone resorption, using aPorphyromonas gingivalis-associated ligature-induced periodontitis model in mice. Wild-type (WT), Tlr2−/−, and Tlr4−/−mice (8 to 10 weeks old) in the C57/BL6 background were used. Silk ligatures were applied to the maxillary second molars in the presence or absence of liveP. gingivalisinfection. Ligatures were removed from the second molars on day 14, and mice were kept for another 2 weeks before sacrifice for final analysis (day 28). On day 14, there were no differences in alveolar bone resorption and gingival RANKL expression between mice treated with ligation plusP. gingivalisinfection and mice treated with ligation alone. Gingival interleukin-1β (IL-1β) and tumor necrosis factor alpha (TNF-α) expression was increased, whereas IL-10 expression was decreased in WT and Tlr2−/−mice but not in Tlr4−/−mice. On day 28, WT and Tlr4−/−mice treated with ligation plusP. gingivalisinfection showed significantly increased bone loss and gingival RANKL expression compared to those treated with ligation alone, whereas such an increase was diminished in Tlr2−/−mice. Gingival TNF-α upregulation and IL-10 downregulation were observed only in WT and Tlr4−/−mice, not in Tlr2−/−mice. In all mice, bone resorption induced by ligation plusP. gingivalisinfection was antagonized by local anti-RANKL antibody administration. This study suggests thatP. gingivalisexacerbates ligature-induced, RANKL-dependent periodontal bone resorption via differential regulation of TLR2 and TLR4 signaling.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3