Rapid Nanopore Sequencing of Plasmids and Resistance Gene Detection in Clinical Isolates

Author:

Lemon Jamie K.1,Khil Pavel P.1,Frank Karen M.1,Dekker John P.1

Affiliation:

1. Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA

Abstract

ABSTRACT Recent advances in nanopore sequencing technology have led to a substantial increase in throughput and sequence quality. Together, these improvements may permit real-time benchtop genomic sequencing and antimicrobial resistance gene detection in clinical isolates. In this study, we evaluated workflows and turnaround times for a benchtop long-read sequencing approach in the clinical microbiology laboratory using the Oxford Nanopore Technologies MinION sequencer. We performed genomic and plasmid sequencing of three clinical isolates with both MinION and Illumina MiSeq, using different library preparation methods (2D and rapid 1D) with the goal of antimicrobial resistance gene detection. We specifically evaluated the advantages of using plasmid DNA for sequencing and the value of supplementing MinION sequences with MiSeq reads for increasing assembly accuracy. Resequencing of three plasmids in a reference Klebsiella pneumoniae isolate demonstrated ∼99% accuracy of draft MinION-only assembly and >99.9% accuracy of assembly polished with MiSeq reads. Plasmid DNA sequencing of previously uncharacterized clinical extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and K. pneumoniae isolates using MinION allowed successful identification of antimicrobial resistance genes in the draft assembly corresponding to all classes of observed plasmid-based phenotypic resistance. Importantly, use of plasmid DNA enabled lower depth sequencing, and assemblies sufficient for full antimicrobial resistance gene annotation were obtained with as few as 2,000 to 5,000 reads, which could be acquired in 20 min of sequencing. With a MinION-only workflow that balances accuracy against turnaround time, full annotation of plasmid resistance gene content could be obtained in under 6 h from a subcultured isolate, less time than traditional phenotypic susceptibility testing.

Funder

HHS | National Institutes of Health

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3