Erythroid Cell-Specific α-Globin Gene Regulation by the CP2 Transcription Factor Family

Author:

Kang Ho Chul1,Chae Ji Hyung1,Lee Yeon Ho1,Park Mi-Ae1,Shin June Ho1,Kim Sung-Hyun1,Ye Sang-Kyu2,Cho Yoon Shin1,Fiering Steven3,Kim Chul Geun1

Affiliation:

1. Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 133-791, South Korea

2. Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799, South Korea

3. Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire 03756

Abstract

ABSTRACT We previously demonstrated that ubiquitously expressed CP2c exerts potent erythroid-specific transactivation of α-globin through an unknown mechanism. This mechanism is reported here to involve specific CP2 splice variants and protein inhibitor of activated STAT1 (PIAS1). We identify a novel murine splice isoform of CP2, CP2b, which is identical to CP2a except that it has an additional 36 amino acids encoded by an extra exon. CP2b has an erythroid cell-specific transcriptional activation domain, which requires the extra exon and can form heteromeric complexes with other CP2 isoforms, but lacks the DNA binding activity found in CP2a and CP2c. Transcriptional activation of α-globin occurred following dimerization between CP2b and CP2c in erythroid K562 and MEL cells, but this dimerization did not activate the α-globin promoter in nonerythroid 293T cells, indicating that an additional erythroid factor is missing in 293T cells. PIAS1 was confirmed as a CP2 binding protein by the yeast two-hybrid screen, and expression of CP2b, CP2c, and PIAS1 in 293T cell induced α-globin promoter activation. These results show that ubiquitously expressed CP2b exerts potent erythroid cell-specific α-globin gene expression by complexing with CP2c and PIAS1.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3