Characterization of macrophage sensitivity and resistance to anthrax lethal toxin

Author:

Friedlander A M1,Bhatnagar R1,Leppla S H1,Johnson L1,Singh Y1

Affiliation:

1. U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702-5011.

Abstract

Anthrax lethal toxin, which consists of two proteins, protective antigen and lethal factor, is cytolytic for macrophages. Macrophages from different mouse strains were found to vary in their sensitivities to toxin. C3H mouse macrophages lysed by lethal factor concentrations of 0.001 micrograms/ml were 100,000 times more sensitive than those from resistant A/J mice. We analyzed various stages of the intoxication process to determine the basis for this resistance. Direct binding studies with radioiodinated protective antigen revealed that the affinity (Kd, approximately 0.5 nM) and number of receptors per cell (25,000 to 33,000) were the same in sensitive and resistant cells. Proteolytic activation of protective antigen by a cell surface protease and subsequent binding of lethal factor were also the same in both sensitive and resistant macrophages. Resistant A/J macrophages were not cross-resistant to other toxins and a virus which, like lethal toxin, require vesicular acidification for activity, implying that resistance is not due to a defect in vesicular acidification. When introduced into the cytosol by osmotic lysis of pinosomes, lethal factor in the absence of protective antigen was cytolytic for the sensitive macrophages while resistant cells were unaffected. Thus, lethal factor by itself possesses the toxic activity of lethal toxin. These results suggest that macrophage resistance is due to a defect at a stage occurring after toxin internalization. A/J macrophages may lack the putative lethal factor target in the cytosol or be defective in the further processing or activation of lethal factor in the cytosol or in endocytic vesicles.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 133 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3