Identification and characterization of genes encoding the human transferrin-binding proteins from Haemophilus influenzae

Author:

Gray-Owen S D1,Loosmore S1,Schryvers A B1

Affiliation:

1. Department of Microbiology and Infectious Diseases, Faculty of Medicine, University of Calgary, Alberta, Canada.

Abstract

Haemophilus influenzae, a strict human pathogen, acquires iron in vivo through the direct binding and removal of iron from human transferrin by an as yet uncharacterized process at the bacterial cell surface. In this study, the tbpA and tbpB genes of H. influenzae, encoding the transferrin-binding proteins Tbp1 and Tbp2, respectively, were cloned and sequenced. Alignments of the H. influenzae Tbp1 and Tbp2 protein sequences with those of related proteins from heterologous species were analyzed. On the basis of similarities between these and previously characterized proteins, Tbp1 appears to be a member of the TonB-dependent family of outer membrane proteins while Tbp2 is lipid modified by signal peptidase II. Isogenic mutants deficient in expression of Tbp1 or Tbp2 or both proteins were prepared by insertion of the Tn903 kanamycin resistance cassette into cloned sequences and reintroduction of the interrupted sequences into the wild-type chromosome. Binding assays with the mutants showed that a significant reduction in transferrin-binding ability resulted from the loss of either of the Tbps and a complete loss of binding was evident when neither protein was expressed. Loss of either Tbp2 or both proteins correlated with an inability to grow on media supplemented with transferrin-bound iron as the sole source of iron, whereas the Tbp1+ Tbp2- mutant was able to grow only at high transferrin concentrations.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference55 articles.

1. Gonococcal transferrin-binding protein 2 facilitates but is not essential for transferrin utilization;Anderson J. A.;J. Bacteriol.,1994

2. Removal of iron from human transferrin by Neisseria meningitidis;Archibald F. S.;Microbiol. Lett.,1979

3. Iron acquisition by Neisseria meningitidis in vitro;Archibald F. S.;Infect. Immun.,1980

4. Ausubel F. M. R. Brent R. E. Kingston D. D. Moore J. G. Seidman J. A. Smith and K. Struhl. 1994. Current protocols in molecular biology. Greene Publishing and Wiley Interscience New York.

5. Molecular mechanisms of regulation of siderophore-mediated iron assimilation;Bagg A.;Microbiol. Rev.,1987

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3