Growth of Francisella tularensis LVS in macrophages: the acidic intracellular compartment provides essential iron required for growth

Author:

Fortier A H1,Leiby D A1,Narayanan R B1,Asafoadjei E1,Crawford R M1,Nacy C A1,Meltzer M S1

Affiliation:

1. Department of Cellular Immunology, Walter Reed Army Institute of Research, Washington, D.C. 20307-5100.

Abstract

Murine macrophages supported exponential intracellular growth of Francisella tularensis LVS in vitro with a doubling time of 4 to 6 h. LVS was internalized and remained in a vacuolar compartment throughout its growth cycle. The importance of endosome acidification to intracellular growth of this bacterium was assessed by treatment of LVS-infected macrophages with several different lysosomotropic agents (chloroquine, NH4Cl, and ouabain). Regardless of the agent used or its mechanism of action, macrophages treated with agents that blocked endosome acidification no longer supported replication of LVS. Over several experiments for each lysosomotropic agent, the number of CFU of LVS recovered from treated macrophage cultures was equivalent to the input inoculum (approximately 10(4) CFU) at 72 h. In contrast, over 10(8) CFU was consistently recovered from untreated cultures. Pretreatment of macrophages with these endosome acidification inhibitors did not alter their ingestion of bacteria. Further, the effects of the inhibitors were completely reversible: inhibitor-pretreated LVS-infected macrophages washed free of the agent and cultured in medium fully supported LVS growth over 72 h. Endosome acidification is an important cellular event essential for release of iron from transferrin. The growth-inhibitory effects of both chloroquine and NH4Cl were completely reversed by addition of ferric PPi, a transferrin-independent iron source, at a neutral pH but not by addition of excess holotransferrin. Thus, intracellular localization in an acidic vesicle which facilitates the availability of iron essential for Francisella growth is a survival tactic of this bacterium, and iron depletion is one mechanism that macrophages use to inhibit its growth.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3