Solvent-Augmented Mineralization of Pyrene by a Mycobacterium sp

Author:

Jimenez I Y,Bartha R

Abstract

The biodegradation of polycyclic aromatic hydrocarbon pollutants is constrained, in part, by their solid physical state and very low water solubility. Searching for ways to overcome these limitations, we isolated from soil a bacterium capable of growing on pyrene as a sole source of carbon and energy. Acid-fast stain, morphology, and fatty acid profile identified it as a Mycobacterium sp. In a mineral salts solution, the isolate mineralized 50% of a 250-(mu)g/ml concentration of [(sup14)C]pyrene in 2 to 3 days. Detergent below the critical micelle concentration increased the pyrene mineralization rate to 154%, but above the critical micelle concentration, the detergent severely inhibited pyrene mineralization. The water-miscible solvent polyethylene glycol was inhibitory. The hydrophobic solvents heptamethylnonane, decalin, phenyldecane, and diphenylmethane were also inhibitory at several concentrations tested, but the addition of paraffin oil, squalene, squalane, tridecylcyclohexane, and cis-9-tricosene at 0.8% (vol/vol) doubled pyrene mineralization rates by the Mycobacterium sp. without being utilized themselves. The Mycobacterium sp. was found to have high cell surface hydrophobicity and adhered to the emulsified solvent droplets that also contained the dissolved pyrene, facilitating its mass transfer to the degrading bacteria. Cells physically adhering to solvent droplets metabolized pyrene 8.5 times as fast as cells suspended in the aqueous medium. An enhanced mass transfer of polycyclic aromatic hydrocarbon compounds to microorganisms by suitable hydrophobic solvents might allow the development of solvent-augmented biodegradation techniques for use in aqueous or slurry-type bioreactors.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference21 articles.

1. Alexander M. 1994. Biodegradation and bioremediation p. 131-148. Academic Press Inc. San Diego Calif.

2. Atlas R. M. 1993. Handbook of microbiological media p. 841. CRC Press Inc. Boca Raton Fla.

3. Bartha R. and I. Bossert. 1984. The treatment and disposal of petroleum refinery wastes p. 553-577. In R. M. Atlas (ed.) Petroleum microbiology. Macmillan New York.

4. Degradation of phenanthrene, fluorene, fluoranthene, and pyrene by a Mycobacterium sp;Boldrin B.;Appl. Environ. Microbiol.,1993

5. Cell-free peroxidase in soil;Bordeleau L.;Soil Biol. Biochem.,1969

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3