Affiliation:
1. Department of Applied Biochemistry and Food Science, Faculty of Agricultural and Food Sciences, University of Nottingham, Leicestershire, United Kingdom.
Abstract
The differential resistance of substratum-attached, detached, and planktonic cells of Salmonella enteritidis phage type 4 was studied by using several inimical processes and in vivo bioluminescence as a nondestructive, real-time reporter of metabolic activity. Bioluminescence in this strain was mediated by a construction containing the entire lux operon from Photorhabdus luminescens. An excellent correlation between bioluminescence and classical plate count data was obtained when we compared attachment profiles, biocide concentration exponents, and thermal inactivation D values (D value was the time required for a 10-fold reduction in the number of survivors). Biocide challenge of surface-adherent S. enteritidis resulted in concentration exponents that were experimentally indistinguishable from those obtained with Luria-Bertani broth-grown planktonic cells. It appears that cleansing regimes developed by using planktonic cell data are effective against surface-attached cells of this bacterium. Both attached and detached cells exhibited an approximately twofold increase in D values at 52 degrees C compared with values calculated for planktonic cells, strongly indicating that the detached cells exhibited an attached phenotype during the heating process. A model of a physiological adaptive response induced in attached cells and also reflected in detached cells is presented.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
82 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献