Inactivation of rsmA leads to overproduction of extracellular pectinases, cellulases, and proteases in Erwinia carotovora subsp. carotovora in the absence of the starvation/cell density-sensing signal, N-(3-oxohexanoyl)-L-homoserine lactone

Author:

Chatterjee A1,Cui Y1,Liu Y1,Dumenyo C K1,Chatterjee A K1

Affiliation:

1. Department of Plant Pathology, University of Missouri, Columbia 65211, USA.

Abstract

The soft-rotting bacterium, Erwinia carotovora subsp. carotovora 71, produces extracellular enzymes such as pectate lyase isozymes (Pels), cellulase (Cel), polygalacturonase (Peh), and protease (Prt). While the extracellular levels of these enzymes are extremely low when the bacterium is grown in salts-yeast extract-glycerol (SYG) medium, the enzymatic activities are highly induced in SYG medium supplemented with celery extract. By transposon (mini-Tn5) mutagenesis, we isolated a RsmA- mutant, AC5070, which overproduces extracellular enzymes; the basal levels of Pel, Peh, and Cel in AC5070 are higher than the induced levels in the RsmA+ parent, AC5047. While Peh production is mostly constitutive in AC5070, Pel, Cel, and Prt production is still inducible with celery extract. The high basal levels of pel-1, pel-3, and peh-1 mRNAs in AC5070 demonstrate that overproduction of the pectolytic enzymes is due to the stimulation of transcription. Using chromosomal DNA flanking mini-Tn5 as a probe, we cloned the wild-type rsmA+ allele, which suppresses Pel, Peh, Cel, and Prt production in both RsmA+ and RsmA- strains. The RsmA- mutant, like its parent, produces N-(3-oxohexanoyl)-L-homoserine lactone (HSL), a starvation/cell density-sensing signal required for extracellular enzyme production. To examine the role of HSL, we constructed HSL-deficient strains by replacing hslI, a locus required for HSL production, with hslI::Tn3HoHo1-Spc. While the basal levels of Pel, Peh, Cel, and Prt are comparable in the RsmA- mutant and its HSL- derivative, these enzymes are barely detectable in the Hsl- derivative of the RsmA+ parent strain.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3