Construction of a rhizosphere pseudomonad with potential to degrade polychlorinated biphenyls and detection of bph gene expression in the rhizosphere

Author:

Brazil G M1,Kenefick L1,Callanan M1,Haro A1,de Lorenzo V1,Dowling D N1,O'Gara F1

Affiliation:

1. Department of Microbiology, University College, Cork, Ireland.

Abstract

The genetically engineered transposon TnPCB, contains genes (bph) encoding the biphenyl degradative pathway. TnPCB was stably inserted into the chromosome of two different rhizosphere pseudomonads. One genetically modified strain, Pseudomonas fluorescens F113pcb, was characterized in detail and found to be unaltered in important parameters such as growth rate and production of secondary metabolites. The expression of the heterologous bph genes in F113pcb was confirmed by the ability of the genetically modified microorganism to utilize biphenyl as a sole carbon source. The introduced trait remained stable in laboratory experiments, and no bph-negative isolates were found after extensive subculture in nonselective media. The bph trait was also stable in nonselective rhizosphere microcosms. Rhizosphere competence of the modified F113pcb was assessed in colonization experiments in nonsterile soil microcosms on sugar beet seedling roots. F113pcb was able to colonize as efficiently as a marked wild-type strain, and no decrease in competitiveness was observed. In situ expression of the bph genes in F113pcb was found when F113pcb bearing a bph'lacZ reporter fusion was inoculated onto sugar beet seeds. This indicates that the bph gene products may also be present under in situ conditions. These experiments demonstrated that rhizosphere-adapted microbes can be genetically manipulated to metabolize novel compounds without affecting their ecological competence. Expression of the introduced genes can be detected in the rhizosphere, indicating considerable potential for the manipulation of the rhizosphere as a self-sustaining biofilm for the bioremediation of pollutants in soil. Rhizosphere bacteria such as fluorescent Pseudomonas spp. are ecologically adapted to colonize and compete in the rhizosphere environment. Expanding the metabolic functions of such pseudomonads to degrade pollutants may prove to be a useful strategy for bioremediation.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3