Affiliation:
1. Department of Chemical and Environmental Engineering, University of Arizona, Tucson, USA.
Abstract
Seven chemicals, three buffers, and a salt solution known to affect bacterial attachment were tested to quantify their abilities to enhance the penetration of Alcaligenes paradoxus in porous media. Chemical treatments included Tween 20 (a nonionic surfactant that affects hydrophobic interactions), sodium dodecyl sulfate (an anionic surfactant), EDTA (a cell membrane permeabilizer that removes outer membrane lipopolysaccharides), sodium PPi (a surface charge modifier), sodium periodate (an oxidizer that cleaves surface polysaccharides), lysozyme (an enzyme that cleaves cell wall components), and proteinase K (a nonspecific protease that cleaves peptide bonds). Buffers included MOPS [3-(N-morpholino)propanesulfonic acid], Tris, phosphate, and an unbuffered solution containing only NaCl. Transport characteristics in the porous media were compared by using a sticking coefficient, alpha, defined as the rate at which particles stick to a grain of medium divided by the rate at which they strike the grain. Tween 20 reduced alpha by 2.5 orders of magnitude, to alpha = 0.0016, and was the most effective chemical treatment for decreasing bacterial attachment to glass beads in buffered solutions. Similar reductions in alpha were achieved in unbuffered solutions by reducing the solution ionic strength to 0.01 mM. EDTA, protease, and other treatments designed to alter cell structures did not reduce alpha by more than an order of magnitude. The number of bacteria retained by the porous media was decreased by treatments that made A. paradoxus more hydrophobic and less electrostatically charged, although alpha was poorly correlated with electrophoretic mobility and hydrophobicity index measurements at lower alpha values.(ABSTRACT TRUNCATED AT 250 WORDS)
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Reference37 articles.
1. Transport modeling of biological tracers from septic systems;Alhajjar B. J.;Water Res.,1988
2. Canter L. W. and R. C. Knox. 1986. Groundwater pollution control p. 130-156. Lewis Publishers Chelsea Mich.
3. Characklis W. G. and K. C. Marshall. 1990. Biofilms p. 445-486. Wiley New York.
4. Microbial transport in soils and groundwater: a numerical model;Corapcioglu M. Y.;Adv. Water Res.,1985
5. Antihemocytic surface components of Xenorhabdus nematophilus var dutki and their modification by serum of nonimmune larvae of Galleria mellonella;Dumphy G. B.;J. Invertebr. Pathol.,1991
Cited by
106 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献