Urease from a potentially pathogenic coccoid isolate: purification, characterization, and comparison to other microbial ureases

Author:

Lee S G1,Calhoun D H1

Affiliation:

1. The Graduate School and University Center and Department of Chemistry, City College of New York, The City University of New York, New York 10031, USA.

Abstract

Strain SL100 is a gram-positive coccoid isolate prototype with an adhesin specific for gastric mucin and is representative of potentially pathogenic organisms obtained at biopsy from patients with gastric disorders. The urease of this isolate constitutes a significant fraction of the total cell protein, and the outcome of the purification strategy described herein suggests that it is associated with a cell wall fraction. The urease was purified 138-fold to apparent homogeneity, as indicated by gel electrophoresis, to a specific activity of 1,120 U/mg. The urease was unstable during purification in the absence of nickel, which is present in a metallocenter in other microbial ureases. When nickel sulfate was present during growth (5 microM) and in buffers during sonication and purification (100 microM), the urease was completely stable at room temperature during the purification procedure. The native urease was approximately 260 kDa and was composed of three subunits of 65 kDa and three subunits of 21 kDa. The purified urease was relatively stable in acid and retained most of its activity after incubation for 30 min at pH 1.3. The K(m)s for urease measured from whole cells and for the purified enzyme were 0.56 and 1.7 mM, respectively, indicating that some cell wall component(s) affects the affinity of the enzyme for urea. The V(max)s for urea hydrolysis measured from whole cells and for the purified enzyme were 8.1 and 1,120 mol/min/mg of protein, respectively. The kinetic parameters, relative abundance, and subunit composition are more similar to those of the ureases of Helicobacter than to those of the ureases of other microbial species. These similarities are consistent with an adaptation of this organism to colonization of the stomach and indicate that the urease may be a virulence factor during colonization.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3