Affiliation:
1. National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa 50010, USA. kregiste@nadc.ars.usda.gov
Abstract
The ability of Bvg(-)-phase and Bvg(+)-phase Bordetella bronchiseptica swine isolates, grown under modulating or nonmodulating conditions, to adhere to swine ciliated nasal epithelial cells was determined. When virulent strains were cultivated at 37 degrees C in the Bvg+ phase, numerous adherent bacteria (approximately eight per cell, depending on the strain used) were observed. However, when such strains were grown under modulating conditions (23 degrees C), a significant increase in the level of attachment was seen, suggesting that B. bronchiseptica produces a Bvg-repressed adhesin under these conditions. bvg mutant strains, including an isogenic bvgS mutant, adhered minimally. Western blots indicated that two putative B. bronchiseptica adhesins, filamentous hemagglutinin and pertactin, were not detectable in cultures displaying the highly adherent phenotype. Several proteins apparent in Western blots obtained by using bacterial extracts enriched in outer membrane proteins derived from B. bronchiseptica grown at 23 degrees C were not present in similar extracts prepared from an isogenic bvgS mutant grown at 23 degrees C or from the parent strain grown at 37 degrees C. Adherence of bacteria cultivated at 23 degrees C was almost completely abolished by pretreatment of organisms at 60 degrees C; adherence was reduced by 57% when bacteria were pretreated with pronase E. Temperature shift experiments revealed that the heightened level of adhesion that occurs following growth at 23 degrees C was maintained for up to 18 h when bacteria were subsequently incubated at 37 degrees C. We propose that a Bvg-repressed adhesin, expressed only by modulated bvg+ strains of B. bronchiseptica, may play a key role in the initial colonization of naturally infected swine.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献