Differential response of human monocytes to Neisseria gonorrhoeae variants expressing pili and opacity proteins

Author:

Knepper B1,Heuer I1,Meyer T F1,van Putten J P1

Affiliation:

1. Abteilung Infektionsbiologie, Max-Planck-Institut für Biologie, Tübingen, Germany.

Abstract

Experiments in vitro suggest that Neisseria gonorrhoeae surface variation plays a key role in gonococcal pathogenesis by providing the appropriate bacterial phenotypes to go through different stages of the infection. Here we report on the effects of phase and antigen variation of two major gonococcal adhesins, pili and opacity (Opa) outer membrane proteins, on the interaction of the gonococci with human monocytes. Using a set of recombinants of gonococcus strain MS11 that each express 1 of 11 genetically defined Opa proteins or a defined type of pilus, we found that both Opa proteins and pili promote bacterial phagocytosis by monocytes in the absence of serum and that this feature largely depends on the type of protein that is expressed. One of the Opa proteins (Opa[50]) strongly promoted uptake by monocytes but had little effect on the interaction with polymorphonuclear leukocytes under the conditions employed. Similarly, the phagocytosis-promoting effect of the pili was much more pronounced in monocytes than in neutrophils (4-fold versus 22-fold stimulation of uptake, respectively). Only a subpopulation of both types of phagocytes actively ingested bacteria, as has been observed during natural infections. Measurements of luminol-enhanced chemiluminescence demonstrated that phagocytosis of opaque but not piliated gonococci was accompanied by an increase in oxygen-reactive metabolites. These findings demonstrate that the monocyte response towards gonococci is highly dependent on the bacterial phenotype and differs from the neutrophil response. This diversity in bacterial behavior towards various types of human phagocytic cells underlines the biological impact of gonococcal surface variation and may explain previous contradictory results on this subject.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3