Fungal Skn7 Stress Responses and Their Relationship to Virulence

Author:

Fassler Jan S.1,West Ann H.2

Affiliation:

1. Department of Biology, University of Iowa, Iowa City, Iowa 52242

2. Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019

Abstract

ABSTRACT The histidine kinase-based phosphorelay has emerged as a common strategy among bacteria, fungi, protozoa, and plants for triggering important stress responses and interpreting developmental cues in response to environmental as well as chemical, nutritional, and hormone signals. The absence of this type of signaling mechanism in animals makes the so-called “two-component” pathway an attractive target for development of antimicrobial agents. The best-studied eukaryotic example of a two-component pathway is the SLN1 pathway in Saccharomyces cerevisiae , which responds to turgor and other physical properties associated with the fungal cell wall. One of the two phosphoreceiver proteins known as response regulators in this pathway is Skn7, a highly conserved stress-responsive transcription factor with a subset of activities that are dependent on SLN1 pathway phosphorylation and another subset that are independent. Interest in Skn7as a determinant in fungal virulence stems primarily from its well-established role in the oxidative stress response; however, the involvement of Skn7 in maintenance of cell wall integrity may also be relevant. Since the cell wall is crucial for fungal survival, structural and biosynthetic proteins affecting wall composition and signaling pathways that respond to wall stress are likely to play key roles in virulence. Here we review the molecular and phenotypic characteristics of different fungal Skn7 proteins and consider how each of these properties may contribute to fungal virulence.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3