Type I Interferons Increase Host Susceptibility to Trypanosoma cruzi Infection

Author:

Chessler Anne-Danielle C.1,Caradonna Kacey L.1,Da'dara Akram1,Burleigh Barbara A.1

Affiliation:

1. Department of Immunology and Infectious Diseases, Harvard School of Public Health, Bldg. I, Rm. 810, 665 Huntington Ave., Boston, Massachusetts 02115

Abstract

ABSTRACT Trypanosoma cruzi , the protozoan parasite that causes human Chagas' disease, induces a type I interferon (IFN) (IFN-α/β) response during acute experimental infection in mice and in isolated primary cell types. To examine the potential impact of the type I IFN response in shaping outcomes in experimental T. cruzi infection, groups of wild-type (WT) and type I IFN receptor-deficient (IFNAR −/− ) 129sv/ev mice were infected with two different T. cruzi strains under lethal and sublethal conditions and several parameters were measured during the acute stage of infection. The results demonstrate that type I IFNs are not required for early host protection against T. cruzi . In contrast, under conditions of lethal T. cruzi challenge, WT mice succumbed to infection whereas IFNAR −/− mice were ultimately able to control parasite growth and survive. T. cruzi clearance in and survival of IFNAR −/− mice were accompanied by higher levels of IFN-γ production by isolated splenocytes in response to parasite antigen. The suppression of IFN-γ in splenocytes from WT mice was independent of IL-10 levels. While the impact of type I IFNs on the production of IFN-γ and other cytokines/chemokines remains to be fully determined in the context of T. cruzi infection, our data suggest that, under conditions of high parasite burden, type I IFNs negatively impact IFN-γ production, initiating a detrimental cycle that contributes to the ultimate failure to control infection. These findings are consistent with a growing theme in the microbial pathogenesis field in which type I IFNs can be detrimental to the host in a variety of nonviral pathogen infection models.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3