Affiliation:
1. Department of Plant Pathology and Physiology, Clemson University, South Carolina 29634-0377, USA.
Abstract
Two genes, pecA and pecB, encoding endopolyglacturonases were cloned from a highly aggressive strain of Aspergillus flavus. The pecA gene consisted of 1,228 bp encoding a protein of 363 amino acids with a predicted molecular mass of 37.6 kDa, interrupted by two introns of 58 and 81 bp in length. Accumulation of pecA mRNA in both pectin- or glucose-grown mycelia in the highly aggressive strain matched the activity profile of a pectinase previously identified as P2c. Transformants of a weakly aggressive strain containing a functional copy of the pecA gene produced P2c in vitro, confirming that pecA encodes P2c. The coding region of pecB was determined to be 1,217 bp in length interrupted by two introns of 65 and 54 bp in length. The predicted protein of 366 amino acids had an estimated molecular mass of 38 kDa. Transcripts of this gene accumulated in mycelia grown in medium containing pectin alone, never in mycelia grown in glucose-containing medium, for both highly and weakly aggressive strains. Thus, pecB encodes the activity previously identified as P1 or P3. pecA and pecB share a high degree of sequence identity with polygalacturonase genes from Aspergillus parasiticus and Aspergillus oryzae, further establishing the close relationships between members of the A. flavus group. Conservation of intron positions in these genes also indicates that they share a common ancestor with genes encoding endopolyglacturonases of Aspergillus niger.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献