Differential Engagement of Fermentative Taxa in Gut Contents of the Earthworm Lumbricus terrestris

Author:

Meier Anja B.1,Hunger Sindy1,Drake Harold L.1

Affiliation:

1. Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany

Abstract

ABSTRACT The earthworm gut is an anoxic, saccharide-rich microzone in aerated soils. The apparent degradation of diverse saccharides in the alimentary canal of the model earthworm Lumbricus terrestris is concomitant with the production of diverse organic acids, indicating that fermentation is an ongoing process in the earthworm gut. However, little is known about how different gut-associated saccharides are fermented. The hypothesis of this investigation was that different gut-associated saccharides differentially stimulate fermentative microorganisms in gut contents of L. terrestris . This hypothesis was addressed by (i) assessing the fermentation profiles of anoxic gut content microcosms that were supplemented with gut-associated saccharides and (ii) the concomitant phylogenic analysis of 16S rRNA sequences. Galactose, glucose, maltose, mannose, arabinose, fucose, rhamnose, and xylose stimulated the production of fermentation products, including H 2 , CO 2 , acetate, lactate, propionate, formate, succinate, and ethanol. Fermentation profiles were dependent on the supplemental saccharide (e.g., glucose yielded large amounts of H 2 and ethanol, whereas fucose did not, and maltose yielded large amounts of lactate, whereas mannose did not). Approximately 1,750,000 16S rRNA sequences were affiliated with 37 families, and phylogenic analyses indicated that a respective saccharide stimulated a subset of the diverse phylotypes. An Aeromonas -related phylotype displayed a high relative abundance in all treatments, whereas key Enterobacteriaceae -affiliated phylotypes were stimulated by some but not all saccharides. Collectively, these results reinforce the likelihood that (i) different saccharides stimulate different fermentations in gut contents of the earthworm and (ii) facultative aerobes related to Aeromonadaceae and Enterobacteriaceae can be important drivers of these fermentations. IMPORTANCE The feeding habits of earthworms influence the turnover of elements in the terrestrial biosphere. The alimentary tract of the earthworm constitutes an anoxic saccharide-rich microzone in aerated soils that offers ingested microbes a unique opportunity for anaerobic growth. The fermentative activity of microbes in the alimentary tract are responsible for the in situ production of (i) organic compounds that can be assimilated by the earthworm and (ii) H 2 that is subject to in vivo emission by the earthworm and can be trophically linked to secondary microbial events in soils. To gain insight on how fermentative members of the gut microbiome might respond to the saccharide-rich alimentary canal, this study examines the impact of diverse gut-associated saccharides on the differential activation of fermentative microbes in gut contents of the model earthworm L. terrestris .

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference91 articles.

1. The formation of vegetable mould, through the action of worms : with observations on their habits /

2. Lee KE. 1985. Earthworms: their ecology and relationships with soils and land use. Academic Press, Sydney, Australia.

3. Earthworm activities and the soil system

4. Edwards CA, Bohlen PJ. 1996. Biology and ecology of earthworms, 3rd ed. Chapman & Hall, London, United Kingdom.

5. Makeschin F. 1997. Earthworms (Lumbricidae: Oligochaeta): important promoters of soil development and soil fertility, p 173–223. In Benckiser G (ed), Fauna in soil ecosystems. Marcel Dekker, Inc., New York, NY.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3