Genome-Scale Genotype-Phenotype Matching of Two Lactococcus lactis Isolates from Plants Identifies Mechanisms of Adaptation to the Plant Niche

Author:

Siezen Roland J.123,Starrenburg Marjo J. C.1,Boekhorst Jos3,Renckens Bernadet13,Molenaar Douwe12,van Hylckama Vlieg Johan E. T.12

Affiliation:

1. NIZO food research, Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 20, 6710 BA Ede, The Netherlands

2. TI Food and Nutrition, P.O. Box 557, 6700 AN Wageningen, The Netherlands

3. Centre for Molecular and Biomolecular Informatics (CMBI 260), Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands

Abstract

ABSTRACT Lactococcus lactis is a primary constituent of many starter cultures used for the manufacturing of fermented dairy products, but the species also occurs in various nondairy niches such as (fermented) plant material. Three genome sequences of L. lactis dairy strains (IL-1403, SK11, and MG1363) are publicly available. An extensive molecular and phenotypic diversity analysis was now performed on two L. lactis plant isolates. Diagnostic sequencing of their genomes resulted in over 2.5 Mb of sequence for each strain. A high synteny was found with the genome of L. lactis IL-1403, which was used as a template for contig mapping and locating deletions and insertions in the plant L. lactis genomes. Numerous genes were identified that do not have homologs in the published genome sequences of dairy L. lactis strains. Adaptation to growth on substrates derived from plant cell walls is evident from the presence of gene sets for the degradation of complex plant polymers such as xylan, arabinan, glucans, and fructans but also for the uptake and conversion of typical plant cell wall degradation products such as α-galactosides, β-glucosides, arabinose, xylose, galacturonate, glucuronate, and gluconate. Further niche-specific differences are found in genes for defense (nisin biosynthesis), stress response (nonribosomal peptide synthesis and various transporters), and exopolysaccharide biosynthesis, as well as the expected differences in various mobile elements such as prophages, plasmids, restriction-modification systems, and insertion sequence elements. Many of these genes were identified for the first time in Lactococcus lactis . In most cases good correspondence was found with the phenotypic characteristics of these two strains.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3