Effect of Iron Concentration on the Growth Rate of Pseudomonas syringae and the Expression of Virulence Factors in hrp -Inducing Minimal Medium

Author:

Kim Beum Jun1,Park Joon Ho12,Park Tai Hyun12,Bronstein Philip A.3,Schneider David J.3,Cartinhour Samuel W.3,Shuler Michael L.14

Affiliation:

1. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853

2. School of Chemical and Biological Engineering, Seoul National University, Gwanak-gu, Sillim-dong San 56-1, Seoul 151-744, South Korea

3. U.S. Department of Agriculture, Agricultural Research Service, and Department of Plant Pathology and Plant-Microbe Interactions, Cornell University, Ithaca, New York 14853

4. Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853

Abstract

ABSTRACT Although chemically defined media have been developed and widely used to study the expression of virulence factors in the model plant pathogen Pseudomonas syringae , it has been difficult to link specific medium components to the induction response. Using a chemostat system, we found that iron is the limiting nutrient for growth in the standard hrp -inducing minimal medium and plays an important role in inducing several virulence-related genes in Pseudomonas syringae pv. tomato DC3000. With various concentrations of iron oxalate, growth was found to follow Monod-type kinetics for low to moderate iron concentrations. Observable toxicity due to iron began at 400 μM Fe 3+ . The kinetics of virulence factor gene induction can be expressed mathematically in terms of supplemented-iron concentration. We conclude that studies of induction of virulence-related genes in P. syringae should control iron levels carefully to reduce variations in the availability of this essential nutrient.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference29 articles.

1. Büttner, D., and U. Bonas. 2003. Common infection strategies of plant and animal pathogenic bacteria. Curr. Opin. Plant Biol.6:312-319.

2. Byers, B. R., and J. E. L. Arceneaux. 1998. Microbial iron transport: iron acquisition by pathogenic microorganisms, p. 37-66. In A. Sigel and H. Sigel (ed.), Metal ions in biological systems: iron transport and storage in microorganisms, plants, and animals, vol. 35. Marcel Dekker, Inc., New York, NY.

3. Earhart, C. F. 1996. Uptake and metabolism of iron and molybdenum, p. 1075-1090. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 1. ASM Press, Washington, DC.

4. Goldberg, I., and Z. Er-el. 1981. The chemostat—an efficient technique for medium optimization. Process Biochem.16:2-8.

5. Gross, D. C. 1985. Regulation of syringomycin synthesis in Pseudomonas syringae pv. syringae and defined conditions for its production. J. Appl. Bacteriol.58:167-174.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3