The Hepatitis C Virus RNA 3′-Untranslated Region Strongly Enhances Translation Directed by the Internal Ribosome Entry Site

Author:

Song Yutong1,Friebe Peter2,Tzima Eleni1,Jünemann Christiane1,Bartenschlager Ralf2,Niepmann Michael1

Affiliation:

1. Institute of Biochemistry, Faculty of Medicine, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany

2. Department of Molecular Virology, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany

Abstract

ABSTRACT The positive-strand RNA genome of the hepatitis C virus (HCV) is flanked by 5′- and 3′-untranslated regions (UTRs). Translation of the viral RNA is directed by the internal ribosome entry site (IRES) in the 5′-UTR, and subsequent viral RNA replication requires sequences in the 3′-UTR and in the 5′-UTR. Addressing previous conflicting reports on a possible function of the 3′-UTR for RNA translation in this study, we found that reporter construct design is an important parameter in experiments testing 3′-UTR function. A translation enhancer function of the HCV 3′-UTR was detected only after transfection of monocistronic reporter RNAs or complete RNA genomes having a 3′-UTR with a precise 3′ terminus. The 3′-UTR strongly stimulates HCV IRES-dependent translation in human hepatoma cell lines but only weakly in nonliver cell lines. The variable region, the poly(U · C) tract, and the most 3′ terminal stem-loop 1 of the highly conserved 3′ X region contribute significantly to translation enhancement, whereas stem-loops 2 and 3 of the 3′ X region are involved only to a minor extent. Thus, the signals for translation enhancement and for the initiation of RNA minus-strand synthesis in the HCV 3′-UTR partially overlap, supporting the idea that these sequences along with viral and possibly also cellular factors may be involved in an RNA 3′-5′ end interaction and a switch between translation and RNA replication.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3