Toxigenic Vibrio cholerae strains in South-East Queensland, Australian river waterways

Author:

Bhandari Murari12ORCID,Rathnayake Irani U.2,Ariotti Lawrence2,Heron Brett2,Huygens Flavia1,Sullivan Mitchelle2,Jennison Amy V.2

Affiliation:

1. Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Queensland, Australia

2. Department of Health, Public Health Microbiology, Forensic and Scientific Services, Brisbane, Queensland, Australia

Abstract

ABSTRACT Cholera is a major public health problem in developing and underdeveloped countries; however, it remains of concern to developed countries such as Australia as international travel-related or locally acquired cholera or diarrheal disease cases are still reported. Cholera is mainly caused by cholera toxin (CT) producing toxigenic O1 and O139 serogroup Vibrio cholerae strains. While most toxigenic V. cholerae cases in Australia are thought to be caused by international-acquired infections, Australia has its own indigenous toxigenic and non-toxigenic O1 and non-O1, non-O139 V. cholerae (NOVC) strains. In Australia, in the 1970s and again in 2012, it was reported that south-east Queensland riverways were a reservoir for toxigenic V. cholerae strains that were linked to local cases. Further surveillance on environmental reservoirs, such as riverways, has not been reported in the literature in the last 10 years. Here we present data from sites previously related to outbreaks and surveillance sampling to detect the presence of V. cholerae using PCR in conjunction with MALDI-TOF and whole-genome sequencing. In this study, we were able to detect NOVC at all 10 sites with all sites having toxigenic non-O1, non-O139 strains. Among 133 NOVC isolates, 22 were whole-genome sequenced and compared with previously sequenced Australian O1 and NOVC strains. None of the samples tested grew toxigenic or non-toxigenic O1 or O139, responsible for epidemic disease. Since NOVC can be pathogenic, continuous surveillance is required to assist in theclinical and envir rapid identification of sources of any outbreaks and to assist public health authorities in implementing control measures. IMPORTANCE Vibrio cholerae is a natural inhabitant of aquatic environments, both freshwater and seawater, in addition to its clinical significance as a causative agent of acute diarrhea and extraintestinal infections. Previously, both toxigenic and non-toxigenic, clinical, and environmental V. cholerae strains have been reported in Queensland, Australia. This study aimed to characterize recent surveillance of environmental NOVC strains isolated from Queensland River waterways to understand their virulence, antimicrobial resistance profile and to place genetic current V. cholerae strains from Australia in context with international strains. The findings from this study suggest the presence of unique toxigenic V. cholerae in Queensland river water systems that are of public health concern. Therefore, ongoing monitoring and genomic characterization of V. cholerae strains from the Queensland environment is important and would assist public health departments to track the source of cholera infection early and implement prevention strategies for future outbreaks. The genomics of environmental V. cholerae could assist us to understand the natural ecology and evolution of this bacterium in natural environments with respect to global warming and climate change.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3