Affiliation:
1. Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
2. Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA
3. Center for Gene Therapy, University of Iowa, Iowa City, Iowa, USA
Abstract
ABSTRACT
Human bocavirus 1 (HBoV1) is an autonomous parvovirus that infects well-differentiated primary human airway epithelia (HAE)
in vitro
. In human embryonic kidney HEK293 cells, the transfection of a duplex HBoV1 genome initiates viral DNA replication and produces progeny virions that are infectious in HAE. HBoV1 takes advantage of signaling pathways in the DNA damage response for efficient genome amplification in both well-differentiated (nondividing) HAE and dividing HEK293 cells. On the other hand, adeno-associated virus 2 (AAV2) is a helper-dependent dependoparvovirus, and productive AAV2 replication requires coinfection with a helper virus (e.g., adenovirus or herpesvirus) or treatment with genotoxic agents. Here, we report that HBoV1 is a novel helper virus for AAV2 replication. Coinfection by HBoV1 and AAV2 rescued AAV2 replication in HAE cells. The helper function of HBoV1 for AAV2 is not limited to HAE cells but also includes HEK293 and HeLa cells. Importantly, the helper function of HBoV1 for AAV2 relies on neither HBoV1 replication nor the DNA damage response. Following transfection of HEK293 cells, the minimal requirements for the replication of the AAV2 duplex DNA genome and the production of progeny virions included the HBoV1 NP1 and NS4 proteins and a newly identified viral long noncoding RNA (BocaSR). However, following infection of HEK293 and HeLa cells with AAV2 virions, HBoV1 NS2 (but not NS4), NP1, and BocaSR were required for AAV2 DNA replication and progeny virion formation. These new methods for packaging the AAV2 genome may be useful for generating recombinant AAV-packaging cell lines and the directed evolution of AAV capsids.
IMPORTANCE
We first report that an autonomous parvovirus, HBoV1, helps the replication of a dependoparvovirus, AAV2, in differentiated human airway epithelia. We identified the minimal sets of HBoV1 genes required to facilitate the replication of the AAV2 duplex genome and for AAV2 infection. Notably, together with the expression of the
NP1
and
BocaSR
genes, HBoV1
NS2
is required for the productive infection of HEK293 and HeLa cells by AAV2, whereas NS4 is sufficient for viral DNA replication of an AAV2 duplex genome. The identification of HBoV1 as a helper virus for AAV2 replication has implications for the improvement of recombinant AAV production in HEK293 cells and cell types that do not express the adenovirus
E1
gene as well as for the rescue of wild-type AAV genomes from tissues during directed evolution in the absence of wild-type adenovirus. A further understanding of the mechanism underlying HBoV1 helper-dependent AAV2 replication may also provide insights into its functions in HBoV1 replication.
Funder
HHS | NIH | National Institute of Allergy and Infectious Diseases
Cystic Fibrosis Foundation
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献