Actinomycin Production Persists in a Strain of Streptomyces antibioticus Lacking Phenoxazinone Synthase

Author:

Jones George H.1

Affiliation:

1. Department of Biology, Emory University, Atlanta, Georgia 30322

Abstract

ABSTRACT Truncated fragments of the phenoxazinone synthase gene, phsA , were prepared by the PCR. The resulting fragments were cloned into conjugative plasmid pKC1132 and transferred to Streptomyces antibioticus by conjugation from Escherichia coli . Two of the resulting constructs were integrated into the S. antibioticus chromosome by homologous recombination, and each of the resulting strains, designated 3720/pJSE173 and 3720/pJSE174, contained a disrupted phsA gene. Strain 3720/pJSE173 grew poorly, and Southern blotting suggested that genetic changes other than the disruption of the phsA gene might have occurred during the construction of that strain. Strain 3720/pJSE174 sporulated well and grew normally on the medium used to prepare inocula for antibiotic production. Strain 3720/pJSE174 also grew as well as the wild-type strain on antibiotic production medium containing either 1 or 5.7 mM phosphate. Strain 3720/pJSE174 was shown to be devoid of phenoxazinone synthase (PHS) activity, and PHS protein was undetectable in this strain by Western blotting. Despite the absence of detectable PHS activity, strain 3720/pJSE174 produced slightly more actinomycin than did the wild-type parent strain in medium containing 1 or 5.7 mM phosphate. The observation that strain 3720/pJSE174, lacking detectable PHS protein or enzyme activity, retained the ability to produce actinomycin supports the conclusion that PHS is not required for actinomycin biosynthesis in S. antibioticus .

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3