Regulation of ornithine utilization in Pseudomonas aeruginosa (PAO1) is mediated by a transcriptional regulator, OruR

Author:

Hebert M D1,Houghton J E1

Affiliation:

1. Department of Biology, Georgia State University, Atlanta 30303, USA.

Abstract

We have used transpositional mutagenesis of a proline auxotroph (PAO951) to isolate an ornithine utilization (oru) mutant of Pseudomonas aeruginosa (PAO951-4) that was unable to use ornithine efficiently as the sole carbon and nitrogen source. DNA sequence analysis of the inactivated locus confirmed that the transposon had inserted into a locus whose product demonstrated significant primary sequence homology to members of the AraC family of transcriptional activators. DNA mobility shift assays affirmed this potential regulatory function and indicated that the inactivated gene encodes a transcriptional regulator, which has been designated OruR. In trying to define the ornithine utilization phenotype further, a similar inactivation was engineered in the wild-type strain, PAO1. The resulting isolate (PAO1R4) was totally unable to use ornithine as the sole carbon source. Despite the intensified phenotype, this isolate failed to demonstrate significant changes in any of the catabolic or anabolic enzymes that are known to be subject to regulation by the presence of either ornithine or arginine. It did, however, show modified levels of an enzyme, ornithine acetyltransferase (OAcT), that was previously thought to have merely an anaplerotic activity. Definition of this oruR locus and its effects upon OAcT activity provide evidence that control of ornithine levels in P. aeruginosa may have a significant impact upon how the cell is able to monitor and regulate the use of arginine and glutamate as sources of either carbon or nitrogen.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3